
A Seamless Tool Access Architecture from ESL to End Product

Albrecht Mayer
Infineon Technologies AG, 81726 Munich, Germany

albrecht.mayer@infineon.com

Abstract
Tool access to processor cores is needed from the
first ESL (Electronic System Level) models, over chip
design simulation, silicon on wafer, silicon on test
board and prototype systems up to the real end
product. Tools are in particular debuggers, but also
performance optimization tools and domain or system
specific tools. This paper will start with applications
and requirements, discuss then the basic Tool Access
Architecture (TAA) and finally describe a solution in
more detail, which has been implemented (productive
or at least prototypes) for all development stages
from ESL, chip simulation and silicon up to the
automotive target system.

1. Introduction
The motivation for a unified tool access are the
significant cost and time to market benefits due to
reuse and the possibility to execute tasks earlier.
Systems are getting more and more complex. A
multi-core SoC used within a demanding real-time
system is now standard system architecture in many
application areas. The other trend is the shift of
functionality from hardware to software. Both
together require that software is already at least partly
developed in the concept phase based on ESL models.
This is beneficial for proving the hardware and
software concepts, but requires that the standard
software tooling is available also for ESL models.
Since there are in such projects already more software
than hardware developers, and this shift is still going
on, this is an interesting market for tool vendors.
However it needs to be understood, that the rules
come from the software side, where the reference is
the free GNU compiler and not a multi 100k $ HDL
synthesis tool license.
For complex system design the development flow
starts with software development on the ESL model
and ends with debugging the target system. For these

development steps the tool access to the SoC serves
not only as the software debugger connection, it is the
key entry point for analyzing the whole system. A
tool architecture, which allows using the same tools
over the whole development process, will
significantly reduce cost and risk.

2. Applications
Beside the most obvious use case for a unified TAA,
using the same software tooling from ESL model to
end product, there are also other important TAA
applications:
• System and software debug and optimization
• Silicon debug
• Silicon validation tests development
• Tool chain debug
Table 1 shows the mapping of the TAA application to
the different development steps.

 ESL

Model
HDL
Simul.

FPGA
Proto.

Silicon
/Device

Target
System

SW Dev. X (X1) X X X

Silicon
Debug

 X (X2)

Silicon Val.
Test Dev.

(X3) (X4) (X) X

Tool Chain
Debug

(X) X X X

Table 1: TAA Applications and Targets

1 Very low level software like the start-up software in the boot
ROM. Another special application is running known (bug-free)
software on a new hardware design (e.g. new processor pipeline
implementation).
2 Special use case is the analysis of field returns
3 Only for high-level silicon validation tests
4 For a very detailed debugging of silicon validation tests

In the following the terms “silicon” and “device” are
used for the same object but for different
perspectives: “Silicon” is used when the debug of the
chip hardware itself is in the focus, “device” in case
of tooling for software and system debug.

2.1 Software Development
For software development the tool access is needed
for the steps ESL model, possibly an FPGA
prototype, the device on an evaluation board and/or
for the final target system. Since this setup has by far
the most users, the TAA needs to support optimum
tool performance.

2.2 Silicon Debug
Functional silicon debug uses similar methods and
tools as software debug. A software debugger allows
accessing all peripheral registers and supports the
user with semantic information about register bits.
Silicon debug is started on the wafer and then mainly
done with special analysis boards. However an
interesting use case is also silicon debug within the
(customer’s) target system, for analyzing a potential
chip problem (field return) without desoldering.

2.3 Silicon Validation Test Development
Silicon validation tests use, beside downloaded test
programs, the access to special hidden hardware
registers (e.g. by JTAG scan chains) to stimulate and
observe special behavior. This is controlled over the
chip’s tool interface by a test sequencer tool. For
developing these tests it is very important to have
parallel access to the target by the test sequencer tool
and a software debugger tool for the downloaded test
programs.

2.4 Tool Chain Debug
A reliable and robust tool connection is a mandatory
prerequisite for any kind of (test) software
development. In particular when the first wafer comes
from the fab, the bring-up of the tool connection is in
the critical path. A unified TAA allows preparing this
bring-up not only with an FPGA prototype but with
the HDL simulation already.

3. Tool Access Architecture Requirements
The scope of the unified TAA is from ESL to end
product. This range can only be covered, when the
tool interface is on software level. The second general

question is the abstraction and functionality of the
access primitives. For the scope ESL to end product,
the access functionality needs to be on the level of
processor core run control, triggers and trace and not
just on the simple read/write target access level.

3.1 General Requirements
One of the most important requirements for the tool
access is reliability and robustness. It is not
acceptable for the user if artifacts, created by the tool
access, increase the complexity of debugging. Beside
the simple requirement that all information retrieved
from the target is correct, this also means that the tool
operation itself doesn’t cause any changes in the
target’s behavior. Otherwise so called “Heisenbugs”
can be the result, which only occur, when no tool is
connected.

3.1.1 Cost and Performance
For devices with many different customers, like
microcontrollers, it is very important for the silicon
vendor to have a cost effective tooling solution for
evaluation boards. On the other side it needs to be
possible to offer high performance TAA implement-
tations for more demanding use cases.

3.1.2 Parallel Multi-Tool Access
Figure 1 shows a typical multi-device, multi-core
system. For the applications ESL Model and Target
System, the TAA needs to support such a scenario.
For the other applications (Table 1), the (multi-) tool
access is on device level. Please note that there can be
not only several instances of a core, but also different
core types, coming from different IP vendors and
being supported by different tool vendors.

Core
A0

Core
B0

Core
A1

Device A0

Core
A0

Core
B0

Core
A1

Device A1

Core
A0

Core
C0

Device B0

Tool
Core A

Tool
Core B

Tool
Core C

System

Tool I/F

Figure 1: Multi-Device, Multi-Core System

3.1.3 Standard Interfaces
For reducing development effort and cost, standards
are always the preference, if they provide the
necessary functionality.

3.1.4 Ownership and Testability
It is very important that all components of the TAA
have a clear ownership (silicon vendor, tool partner,
etc.) and have straightforward unambiguous
interfaces, which allow a rigorous testing. Only by
careful analysis of what’s needed for covering all
TAA application features, the interfaces can be
reduced to the minimum complexity.

3.2 Special Requirements
Beside the general requirements, which cover the
Software Development application, there are specific
requirements for other TAA applications and TAA
targets (Table 1).

3.2.1 ESL
As already mentioned, the ESL Model application
enforces that the TAA tool interface functionality is
on the level of core run control, triggers and trace in
addition to read/write accesses. The reason for this is
that ESL models have abstract representations of the
on-chip debug IP, which are more powerful and
simulation speed friendly. Without the ESL model
requirement, the unified TAA could be restricted to
read/write target access without more detailed
semantics.

Figure 2: Multi-Vendor IP-Model System

Another ESL specific requirement is shown in
Figure 2. The system integrator will be in a situation,
to integrate models from different vendors (different
colors in Figure 2), connected to tools from different
tool vendors. Silicon Debug
Silicon debug requires additional special access
methods for hidden test registers. Usually these test
registers are implemented as on-chip JTAG scan
chains. So the TAA needs to support a native JTAG
scan access beside the normal, address based device
access methods.

3.2.2 HDL Simulator
The HDL (Hardware Description Language) model of
a chip behaves like the real device, except that it is
very slow. The TAA needs to take this into account
for instance with configurable timeouts.
Since such simulations usually run on Linux compute
farms whilst the tool is on a Windows PC, the TAA
needs to support connecting these two domains over a
LAN.

3.2.3 End Product Debug
Due to cost and space constraints, the end product
doesn’t have in most cases a tool connector (e.g.
JTAG I/F). For getting access to such targets, the
TAA needs to abstract the physical interface and
support tool access across any type of physical device
interface (CAN, USB, etc.), even shared with the
target application.

4. Tool Access Architecture (TAA)
The basic tool access architecture is to have a generic
standard interface for the different tools and a layered
implementation which will differ for the different
stages (“Targets” in Table 1) of the system
development flow.

4.1 TAA Block Diagram
Figure 3 shows the block diagram for such a generic
TAA with the software and hardware layers from
device to tool.

Figure 3: TAA Block Diagram

The device Access HW in Figure 3 can be a simple
and cost effective USB to JTAG converter chip or a
powerful microcomputer with FPGA accelerator for
the physical device connection (JTAG, CAN, etc.) as
the other extreme.
The Device specific Layer converts the tool requests
like “read X bytes from address Y” in the device
specific physical connection command sequences.
The device independent communication with Clients
is handled by the Server Socket and the Client Socket
Layers respectively. In case of the powerful Access
HW, the Server Socket and the Device specific
Layers can be running on the microcomputer as well,
when the connection to the host computer is Ethernet.
The layering on the Client/Tool level starts with the
Tool itself on top, which accesses the target across
the Core (type) specific Layer. This layer translates
requests like “set a SW breakpoint” into the core
specific sequence of register and memory accesses.
This layer is core type specific, but it is independent
from the physical device connection. Only for ESL
models usually another implementation of this layer
is needed. In this case the Core specific Layer
implementation can be even to a great degree core
type independent, when the on-chip debug resources
have the same abstract representation in the ESL
model.

4.2 TAA Concept Considerations
One of the guiding principles for the TAA was to
encapsulate specifics as much as possible locally, so
that higher layers can stay generic and straightfor-
ward. The art is on the other side to avoid making
specific but interesting features of the target not
accessible anymore due to the restrictions of such a
standard interface.

The TAA in Figure 3 encapsulates device type and
physical device connection type dependencies in a
very low layer. This hides for instance specific start-
up behavior of devices with e.g. on-chip voltage
regulators. Since such a device’s start-up behavior
can require hard real-time operation from the tool, it
is even mandatory to handle it on this level.
When the device connection is established, all
accesses from the higher layers are memory mapped.
This is natural for memory mapped registers and
memories but it can be also expanded by using virtual
addresses for specific accesses and operations. So the
same infrastructure and communication scheme can
be used for very different purposes. This scheme
needs to be extended by the concept of atomic
transaction lists. Such a list will be executed
completely without being interrupted by requests
from other Clients/Tools.

5. Infineon’s DAS and MCD API based TAA
The DAS (Device Access Server [1]) architecture was
designed for multi-device multi-core systems with
very demanding emulation requirements. It is broadly
used within Infineon for microcontrollers, but also
outside of Infineon it has been adopted in the OCP-IP
Debug Interface Specification.
The goal of the DAS architecture is to provide one
single interface for all types of tools, which fulfills all
performance and reliability needs.
The tool interface is on software level (DAS API) and
implemented in a generic DLL. It provides the
abstraction of the physical device connection, which
becomes just a parameter value in the connection
setup phase. During operation the physical connection
(e.g. JTAG for real device or directly for C-models) is
fully transparent for the tool. On DAS API level the
physical device connection is represented by address
based accesses (DAS Transaction Lists) and
prioritized, stream based data exchange (DAS
Channels).
Recently the MCD API support has been added on
top of the proven DAS API. The MCD API was
specified within the SPRINT project [4] with the
partners ARM, Infineon, Lauterbach, NXP,
STMicroelectronics and TIMA. It fulfills exactly the
requirements specified in section 3. Figure 4 shows
the resulting layer structure of Infineon’s TAA.

Figure 4 Infineon’s TAA Block Diagram

At the moment most tools from tool partners access
directly DAS, but it is planned to make gradually the
higher level MCD API to the default interface.
In Figure 5 a setup is shown where different tools
access different devices. The Access HW is an on-
board wiggler or a miniWiggler, which supports
JTAG, DAP and SPD. DAP (Device Access Port) is a
well accepted Infineon automotive tooling standard
interface which enables a high-speed long thin cable.
SPD (Single Pin DAP) is the most cost effective
(single device pin) tool connection variant.

Host PC

UDAS
Server

XC800
Tool XC2000

Tool

TriCore
Tool

USB

Evaluation Board
XC2000

On-Board
Wiggler
JTAG

Target System

miniWiggler

miniWiggler XC800

TriCoreDAP
or JTAG

SPD, DAP
or JTAG

TCP/IP

Figure 5: Multi-Device Operation

In Figure 6 a device is accessed by two tools. In this
example, one of them is located on a remote
computer. The use case behind is debugging of
silicon validation tests, which are executed by the test
sequencer tool [5]. Another use case example is
debugging in parallel to automotive measurement.

Figure 6: Multi-Tool Operation

The last example in Figure 7 shows that the Infineon
TAA hides completely the physical device connection
and device representation (real silicon or HDL
model). With a Lauterbach debugger it has been
demonstrated that beside normal miniWiggler access
to a 32-bit TriCore microcontroller also the access
over an XCP [5] slave and even to the HDL model,
running on a simulation computer is possible. Over
the MCD API, all these three devices behave exactly
similar, except that the response from the HDL model
device is very slow (ca. 10-20s) for a single step

Host PC

UDAS
Server

Tool

USB

TCP/IP

Board

miniWiggler TriCore

Compute Farm

HDL
Simulator
TriCore

Ethernet

USB

Automotive ECU

TriCore
XCP
Slave

DAP or
JTAG

DAP
or JTAG

LAN

Figure 7: Abstraction of Device and Connection

The Infineon TAA implementation uses a pragmatic
approach concerning configurability. In relation to a
chip design project, the adaptation of tool access

components is negligible. So it is acceptable to
modify TAA components (Core specific Layer,
Device specific Layer in Figure 4) directly (C/C++
code) instead of developing highly complex
configurable components.

6. Conclusions
A unified Tool Access Architecture for different
device types (e.g. 8, 16 and 32 bit microcontrollers),
different physical interfaces (e.g. JTAG, CAN, etc.)
and different device representations (C-model, HDL
simulator, FPGA and silicon) has significant benefits
for the silicon vendor, customers and tool partners.
These benefits are cost and risk reduction by reuse
and the possibility to execute tasks earlier without
prohibitive effort. This has been proven Infineon
internally using Infineon’s own DAS tooling. With
the recently released MCD API a standardized tool
interface is available now, which allows to cover the
full range from ESL to end product.

7. References
[1] www.infineon.com/DAS
[2] MCD API V1.0 specification

http://www.lauterbach.com/mcd_api.html
[3] OCP-IP Debug Interface Specification V1.0

www.ocpip.org
[4] SPRINT Project www.sprint-project.net
[5] European patent EP1349073B1, “Control system”
[6] ASAM MCD-1.XCP standard , “The Universal

Measurement and Calibration Protocol Family”
http://www.asam.net

